OPERATING AND PROCEDURES

Lesson 2
AGENDA
Lesson 2
From: Emergency Management Ontario

1. PHONETIC ALPHABET

2. NUMBERS

3. VOICE OPERATING PROCEDURES

4. HF / UHF / VHF / BAND PLANS

5. TUNE UPS, TESTING, DUMMY LOADS

6. CW OPS, PROCEDURAL SIGNS / PROWORDS

7. “Q” SIGNALS

8. R.S.T. CODES - READABILITY, STRENGTH, TONE

9. EMERGENCY OPERATING PROCEDURES

10. RECORDING KEEPING, CONFIRMATION, MAPS, CHARTS, ANTENNA ORIENTATION
PHONETIC ALPHABET
Lesson 2
From: Emergency Management Ontario

- Use words to represent letters
- First letter corresponds to the letter
- Prevents confusion on a radio, “B” can sound much like “D”

“B” “BRAVO”
“D” “DELTA”

VICTOR
ECHO
THREE
ECHO
MIKE
OSCAR

VE3EMO

THIS IS A CALL SIGN
<table>
<thead>
<tr>
<th>Letter</th>
<th>Phonetic Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alpha</td>
</tr>
<tr>
<td>B</td>
<td>Bravo</td>
</tr>
<tr>
<td>C</td>
<td>Charlie</td>
</tr>
<tr>
<td>D</td>
<td>Delta</td>
</tr>
<tr>
<td>E</td>
<td>Echo</td>
</tr>
<tr>
<td>F</td>
<td>Foxtrot</td>
</tr>
<tr>
<td>G</td>
<td>Golf</td>
</tr>
<tr>
<td>H</td>
<td>Hotel</td>
</tr>
<tr>
<td>I</td>
<td>India</td>
</tr>
<tr>
<td>J</td>
<td>Juliet</td>
</tr>
<tr>
<td>K</td>
<td>Kilo</td>
</tr>
<tr>
<td>L</td>
<td>Lima</td>
</tr>
<tr>
<td>M</td>
<td>Mike</td>
</tr>
<tr>
<td>N</td>
<td>November</td>
</tr>
<tr>
<td>O</td>
<td>Oscar</td>
</tr>
<tr>
<td>P</td>
<td>Papa</td>
</tr>
<tr>
<td>Q</td>
<td>Quebec</td>
</tr>
<tr>
<td>R</td>
<td>Romeo</td>
</tr>
<tr>
<td>S</td>
<td>Sierra</td>
</tr>
<tr>
<td>T</td>
<td>Tango</td>
</tr>
<tr>
<td>U</td>
<td>Uniform</td>
</tr>
<tr>
<td>V</td>
<td>Victor</td>
</tr>
<tr>
<td>W</td>
<td>Whiskey</td>
</tr>
<tr>
<td>X</td>
<td>X-Ray</td>
</tr>
<tr>
<td>Y</td>
<td>Yankee</td>
</tr>
<tr>
<td>Z</td>
<td>Zulu</td>
</tr>
<tr>
<td></td>
<td>Spell out numbers greater than 9</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Some numbers are pronounced differently to avoid confusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ZEE-ROE</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WUN</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>TOO</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>THU-REE</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>FOWER</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>FIFE</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>SIX</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>SAY-VEN</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ATE</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>NINER</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>WUN - ZEE-ROE</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>WUN- WUN</td>
<td></td>
</tr>
</tbody>
</table>
VOICE OPERATING PROCEDURES
Lesson 2
From: Emergency Management Ontario

UHF / VHF CHANELIZED

Main purpose of repeaters is to **increase the range of mobile and portable stations**

Two frequencies involved: #1 for Receive, #2 for Transmit. Or, you receive on one frequency and transmit out on the second frequency i.e. “**DUPLEX**”

Calling via repeater **say the call sign of the desired station and then yours** i.e. **VE3EOT THIS IS VA3SUG**

Pause between transmission to **listen to or allow anyone else who wants to use the repeater**

Transmissions should be short to **allow for emergency use of repeaters** (don't tie them up) switch to a simplex frequency if distance or time allows

To break into a conversation (non-emergency) on a repeater, **wait for a pause and say your call sign. “contact” although used is **NOT** proper procedure**

“**AUTOPATCH**” a device to allow telephone calls via a station or radio (repeater)

Repeater **“TIME OUT”** timer limits the amount of transmit time via a repeater
An Autopatch is a feature of a repeater to access an outgoing telephone connection. Users with a transceiver capable of producing Dual-tone multi-frequency or touch tones (DTMF) can make a telephone call via public telephone system.
“Continuous Tone-Coded Squelch System” CTCSS or “Private Line” PL Tone, a sub-audible tone added to a carrier which causes a repeater to accept a signal.

2 Meter FM Repeaters use one frequency for transmit and one for receive (duplex operation), The difference between the frequencies (or offset) is usually 600 kHz.

i.e. if the repeater output was on 146.940 MHz, then an operator could reliably assume that setting the input frequency 600 KHz lower to 146.340 MHz would allow him to communicate on this frequency.

<table>
<thead>
<tr>
<th>BAND</th>
<th>OFFSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 meters -</td>
<td>100 KHz</td>
</tr>
<tr>
<td>2 meters -</td>
<td>600 KHz</td>
</tr>
<tr>
<td>222 MHz -</td>
<td>1.6 MHz</td>
</tr>
<tr>
<td>70 centimeters -</td>
<td>5 MHz</td>
</tr>
<tr>
<td>33 centimeters -</td>
<td>12 MHz</td>
</tr>
<tr>
<td>23 centimeters -</td>
<td>12 MHz</td>
</tr>
</tbody>
</table>

To properly ask someone's location, you simply ask them “what is your location, where are you”
CONTINUOUS TONE-CODED SQUELCH SYSTEM” CTCSS (OR PL PRIVATE LINE) TONE

[Map of regions with frequencies labeled: 97.4, 156.7, 131.8, 103.5, 114.8, 118.8, 110.9, 127.3, 141.3]
VOICE OPERATING PROCEDURES
Lesson 2
From: Emergency Management Ontario

HF / UHF / VHF SIMPLEX

"SIMPLEX" operation is transmitting and receiving on the same frequency.

Switch to simplex from repeaters when possible or if distance and situation permits.

Local communications should use VHF and UHF to reduce and free up interference on HF Bands.

Do not tie up repeaters unnecessarily.

If you can hear the station you are talking to on “reverse” or the “input” frequency of the transmitter, you could and should use simplex.

If operating simplex on a repeater frequency don’t try to change the repeater frequency because you can’t, change to another frequency.

To find out if band conditions are open in a specific area or distant location, you should listen for a Beacon signal from that area, a foreign broadcast, or TV station on a nearby frequency.

To call a station, Say “CQ” Three times and then your call i.e. CQCQCQ This is VA3EOT, VA3EOT, VA3EOT.

To answer, say the other stations call sign once followed by your own Phonetically i.e. VA3EOT this VICTOR ALPHA THREE SERIA UNIFORM GULF (VA3SUG).
CHU TIME SIGNAL- 3330, 7335, and 14 670 kHz
WWV TIME SIGNAL- 10,000 W on 5, 10, and 15 MHz; and 2500 W on 2.5 and 20 MHz
The HF Band Plan is a voluntary, gentleman's agreement, intended for the guidance of and observation by Canadian Radio Amateurs.

A guideline for using different operational modes within an amateur band.
CANADIAN HF BAND PLAN

160 Metre Band - Maximum bandwidth 6 kHz
1.800 - 1.820 MHz - CW
1.820 - 1.830 MHz - Digital Modes
1 830 - 1.840 MHz - DX Window
1.840 - 2.000 MHz - SSB / band modes

80 Metre Band - Maximum bandwidth 6 kHz
3.500 - 3.580 MHz - CW
3.580 - 3.620 MHz - Digital Modes
3.620 - 3.635 MHz - Packet/Digital Secondary
3.635 - 3.725 MHz - CW
3.725 - 3.790 MHz - SSB / side band modes
3.790 - 3.800 MHz - SSB DX Window
3.800 - 4.000 MHz - SSB / wide band modes

40 Metre Band - Maximum bandwidth 6 kHz
7.000 - 7.035 MHz - CW
7.035 - 7.050 MHz - Digital Modes
7.040 - 7.050 MHz - International packet
7.050 - 7.100 MHz - SSB
7.100 - 7.120 MHz - Packet within Region 2
7.120 - 7.150 MHz - CW
7.150 - 7.300 MHz - SSB / wide band modes

30 Metre Band - Maximum bandwidth 1 kHz
10.100 - 10.130 MHz - CW only
10.130 - 10.140 MHz - Digital Modes
10.140 - 10.150 MHz - Packet

20 Metre Band - Maximum bandwidth 6 kHz
14.000 - 14.070 MHz - CW only
14.070 - 14.095 MHz - Digital Mode
14.095 - 14.099 MHz - Packet
14.100 MHz - Beacons
14.101 - 14.112 MHz - CW, SSB, Packet
14.112 - 14.350 MHz - SSB
14.225 - 14.235 MHz - SSTV

17 Metre Band - Maximum bandwidth 6 kHz
18.068 - 18.100 MHz - CW
18.100 - 18.105 MHz - Digital Modes
18.105 - 18.110 MHz - Packet
18.110 - 18.168 MHz - SSB / wide band modes

15 Metre Band - maximum bandwidth 6 kHz
21.000 - 21.070 MHz - CW
21.070 - 21.090 MHz - Digital Modes
21.090 - 21.125 MHz - Packet
21.100 - 21.150 MHz - CW and SSB
21.150 - 21.335 MHz - SSB / wide band modes
21.335 - 21.345 MHz - SSTV
21.345 - 21.450 MHz - SSB / wide band modes

12 Metre Band - Maximum bandwidth 6 kHz
24.890 - 24.930 MHz - CW
24.920 - 24.925 MHz - Digital Modes
24.925 - 24.930 MHz - Packet
24.930 - 24.990 MHz - SSB / wide band modes

10 Metre Band - Maximum bandwidth 20 kHz
28.000 - 28.200 MHz - CW
28.070 - 28.120 MHz - Digital Modes
28.120 - 28.190 MHz - Packet
28.190 - 28.200 MHz - Beacons
28.200 - 29.300 MHz - SSB / wide band modes
29.300 - 29.510 MHz - Satellite
29.510 - 29.700 MHz - SSB, FM and repeaters

CANADIAN VHF/UHF BAND PLAN
During a wide area emergency, ARES Ontario and the NTS will use 3.742 MHz and 7.153 MHz, adjusted for QRM, for province wide voice communications.
A dummy load is a device used to simulate an electrical load, usually for testing purposes in place of an antenna.

Tuning into a dummy load will shorten transmitter tune up time on air and avoid interference to stations on frequency.

On air interference can be avoided by using a dummy load to test transmissions, or loading up procedures.

Using a dummy antenna will allow tuning without causing interference.
The "dummy load" is an indispensable accessory for any radio amateur. Using a dummy load, transmitter adjustments can be made "off-the-air" so that no unnecessary interference is generated on the ham bands.

Dummy loads are an easy useful project that just about anyone with moderate soldering skills can build.

A very simple and effective dummy load can be made from several resistors, a connector, and a small metal plate or piece of PC board stock.

Cantenna dummy load suitable up to 30 MHz and up to 1 kW

A dummy load capable of dissipating four times the legal limit (6 kW) for 2 to 3 minutes and legal limit (1500 watts)

25 Watt dummy Load “HOME BREW”
If propagation or band conditions change during a contact and you notice increasing interference you should move to a different frequency.

Before transmitting you should always listen to ensure the frequency is not occupied, you should also ask if the frequency is in use.

During a contact you find you have a extremely strong signal into your contact station, one adjustment you might consider is to turn down your output power to the minimum necessary.
When selecting a single side band (SSB) phone transmitting frequency, the **minimum separation between you and a contact in progress is 3 kHz** to avoid interference.

If your a net control station on a daily HF net and your normal frequency is occupied you should conduct the **net 3 to 5 KHz** away from the normal net frequency

If a net is about to begin on the frequency your on, as a courtesy to the net, you should **move to another frequency**
LISTEN FIRST to ensure the frequency is NOT in use

CW or Morse code is sent at any speed you can reliably receive.

CW Transmitting frequency should be between **150-500** Hrz for minimum interference.

Full Break-in Telegraphy = incoming signals received between transmitted Morse code “signals” (or dots) (This enables the other station to “break-in” while you are still sending)
CW OPS, PROCEDURAL SIGNS / PROWORDS

Lesson 2
From: Emergency Management Ontario

CQ = Calling any station
-“CQ CQ CQ DE VE3EMO VE3EMO VE3EMO”
-CQ Three time your call sign three times

To answer or reply
-“VE3EMO VE3EMO DE VA3SUG VA3SUG K”

DE = from (like the French “from” or “of”)

K = any station transmit, or go ahead, or over to you
CW OPS, PROCEDURAL SIGNS / PROWORDS

Lesson 2
From: Emergency Management Ontario

DX = Long distance

73 = Best wishes / Good Bye *(not 73’s)*

AR = End of message

BT = (or TV), Break in the text

SK = End of transmission

RST = **R**eadability, **S**trength, **T**one - Signal report
The Q-code are a list of signals abbreviating a detailed question or answer.

The Q code is a standardised collection of three-letter message encodings, all starting with the letter "Q",

Agreed upon by the International Telecommunication Union (ITU), is used worldwide on radiotelegraph.

Abbreviations are given the form of a question when followed by a question mark. i.e. “QTH?” what is your location?
QRL "Is this frequency in use?" (or are you busy?)
QRM "I’m being interfered with" Man Made (e.g. jamming)
QRN "I’m troubled by static" Non Man Made interference
QRS "Send more slowly"
QRX "I will call you again"
QRZ "Who is calling me?"
QSO "A contact is in progress" (i.e. thanks for the QSO)
QSY "Change frequency" (QSY to 14.210)
QTH "My location is" My QTH is Toronto
QSL "I acknowledge" I understand, Roger …
QRT "Stop sending" I’m QRT for the day (finished, done)
RST SIGNALS
Lesson 2
From: Emergency Management Ontario

Readability, Strength, Tone
A short way to describe or give a signal or reception report (i.e. radio check) based upon your “S” meter reading and what you actually hear.

An “S” meter is used to measure relative signal strength in a receiver

![Signal Level Diagram]

Poor Good

RST = READABILITY 1-5
SIGNAL STRENGTH 1-9
TOE 1-9
A qualitative assessment of how easy or difficult it is to correctly copy the information being sent

1 Unreadable
2 Barely readable, occasional words distinguishable
3 Readable with considerable difficulty
4 Readable with practically no difficulty
5 Perfectly readable
RST SIGNALS - STRENGTH

Lesson 2
From: Emergency Management Ontario

An assessment of how powerful the received signal is at the receiving station

1 Faint signal, barely perceptible
2 Very weak
3 Weak
4 Fair
5 Fairly good
6 Good
7 Moderately strong
8 Strong
9 Very strong signals
Used only in Morse code and digital transmissions therefore omitted during voice operations

1. Very rough and broad
2. Very rough, very harsh and broad
3. Rough, tone, rectified but not filtered
4. Rough note, some trace of filtering
5. Filtered rectified, but strongly ripple-modulated
6. Filtered tone, definite trace of ripple modulation
7. Near pure tone, trace of ripple modulation
8. Near perfect tone, slight trace of modulation
9. Perfect tone, no trace of ripple or modulation of any kind
RST SIGNALS
Lesson 2
From: Emergency Management Ontario

AN RST OF 599 BEST READING i.e. “you’re 59”

- 11 = Unreadable and barely perceptible
- 57 = Perfectly readable, moderately strong
- 33 = Readable, some difficulty, weak in strength
- 59 plus 20db = Signal strength is 20 db’s over strength
 9 i.e. “your 20 over 9”
- RST of 459 = Quite readable, fair strength, perfect tone
 (tone is usually used for CW)
- RST of 579 = Perfectly readable, moderately strong, perfect tone
- An increase of power 4 times will raise you “S” meter by
 ONE “S” unit
- Thus to raise the meter from S8 to S9 you power on a
 transmitter would need to increase power 4 times
EMERGENCY OPERATING PROCEDURES
Lesson 2
From: Emergency Management Ontario

MAYDAY or SOS precedence over all calls!!!

REAL EMERGENCIES ONLY, IT IS ILLEGAL TO
KNOWENLY TRANSMIT A FALSE DISTRESS
SIGNAL!

URGENCY (PAN-PAN) Say three time, safety for a
person, vehicle, aircraft, vessel, residence etc is
threatened. "Pan-Pan, Pan-Pan, Pan-Pan this is
VE3EOT with"

SECURITY (Securitay) Weather warnings, aids to
navigation, used mostly in or by maritime situations.
"Sécurité, Sécurité, Sécurité. All ships, all
ships, all ships this is VA3XMJ"
If you need immediate emergency assistance, the appropriate voice signal is “MAYDAY” and the appropriate Morse code signal is “SOS”

Used only in a life threatening situation to you or some one else

Derived from the French venez m'aider, meaning "come [to] help me, venez" is dropped, thus MAYDAY.

The Proper way to say is to say “MAYDAY” several times
 I.E. “MAYDAY MAYDAY MAYDAY this is VA3NSC”

For CW “SOS” --- … ---

If your using a repeater and you want to interrupt a conversation with a distress call, you say “BREAK” twice and then you call sign i.e. break break this is VA3SUG with emergency traffic
During a contact you hear a distress call or break in, you:

A. ACKNOWLEDGE THE STATION IN DISTRESS
B. DETERMINE THEIR LOCATION “QTH”
C. ASK WHAT ASSISTANCE IS NEEDED

If you hear a distress call and can not assist, you maintain watch on the frequency until certain that assistance is forthcoming to the caller.

If you are in contact with a station and you hear a emergency call, on your frequency you:

A. STOP YOUR CONTACT
B. TAKE THE CALL
HAVE BACK UP POWER TO USE YOUR STATIONS IN AN EMERGENCY AND NOT BY COMMERICAL AC LINES

HAVE SEVERAL SETS OF BATTEIRS FOR HANDHELDs

DIPOLE ANTENNAS ARE A GOOD CHOICE FOR PORTABLE AND OR EMERGENCY HF STATIONS
QSL CARDS & STATIONS LOGS

QSL CARD IS WRITTEN PROOF OF COMMUNICATIONS BETWEEN TWO AMATEURS, TODAY THERE IS ALSO E-QSL VIA THE INTERNET.

QSL CARDS ARE A SIGNED POST CARD LISTING THE DATE TIME FREQUENCY MODE AND POWER
STATION LOGS AND QSL CARDS ARE ALWAYS KEEP IN UTC (UNIVERSAL TIME COORDINATED / FORMERLY GREENWICH MEAN TIME - GMT. GMT IS BASED ON THE LOCATION / MERIDIAN THAT RUINS THROUGH GREENWICH ENGLAND.

RECORDING CONTACTS AND KEEPING STATION LOG BOOKS IS NO LONGER REQUIRED BY INDUSTRY CANADA

TO SET YOUR CLOCK TO GMT TIME LISTEN TO EITHER CHU CANADA, WWV OR WWVH TIME SIGNALS IN THE UNITED STATES
AZIMUTHAL MAPS

THE MOST USEFUL MAP TO USE WHEN ORIENTING A DIRECTIONAL HF ANTENNA TOWARDS A DISTANT STATION / CONTACT IS A AZIMUTHAL MAP

A AZIMUTHAL MAP IS PROJECTED OR CENTRED ON A SPECIFIC LOCATION AND IS USED TO DETERMINE THE SHORTEST PATH BETWEEN THE CENTRED AND DESIRED LOCATIONS OF CONTACT.

A AZIMUTHAL MAP WILL ALSO SHOW A COMPAS BEARING FROM YOUR LOCATION TO ANY POINT ON THE MAP AND WILL ASSIST IN ANTENNA PLANING AND POINTING.
A DIRECTIONAL ANTENNA POSITION 180 DEGREES (REVERSE BEARING) FROM THE SHORTEST PATH IS REFEREED TO LONG PATH.

IF LISTENING TO LOCAL STATIONS MAKING CONTACT WITH DISTANT STATIONS (I.E. DX NEW ZEALAND) BUT YOU CAN NOT HEAR THE DX STATION, TRY POINTING YOUR ANTENNA IN A LONG PATH DIRECTIONS (BEAMED 180 DEGREES) AND LISTEN FOR INCOMING STATIONS.
QUESTIONS ?????